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A simple method for microwave-assisted amination of 3-bromo-2-chloropyridine with various substi-
tuted aminoethanols is described. The reaction was carried out under microwave irradiation conditions
(at 180 �C for 1–2 h) and the result was superior in terms of conversion and yield when compared to that
of the corresponding conventional heating conditions.
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3,4-Dihydro-2H-pyrido[3,2-b]-1,4-oxazines 1 have shown po-
tential innumerous drug discovery applications. Members of this
class have been appeared in antiviral agents,1 antibacterial agents,2

and anticancer agents.3 Despite the biological importance of 3,4-
dihydro-2H-pyrido[3,2-b]-1,4-oxazines, synthetic methods for the
preparation of analogs containing different substituents at C-2
and C-3 are limited.4

Our interest in the search for new tyrosine kinase inhibitors has
been focusing on the synthesis of 3,4-dihydro-2H-pyrido[3,2-b]-
1,4-oxazines in which these scaffolds might be able to bind to
hinge domains of various tyrosine kinase proteins.5 In Scheme 1,
we envisioned that the oxazine ring could be constructed from
2-aminoalcohol-substituted 3-bromopyridines via a Pd-catalyzed
C–O bond formation. In order to prepare 2-amino-3-bromopyri-
dines containing hydroxy moiety 2, 3-bromo-2-chloropyridine
was coupled with various aminoalcohols by heating in the
presence of a base. Although these conventional methods have
proven to be useful protocols, they are of limited use for producing
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compounds 2 with various substituents because of the require-
ment of high temperature (�150 �C) and long reaction time
(>24 h).6

Although a promising substitution reaction of 2-chloropyridines
with amines in the presence of transition metal catalysts such as
Pd,7 Ni,8 and Co9 has been reported, the adaption of these
approaches to our system has been met with limited success result-
ing in the generation of a mixture of regioisomers10 due to the pres-
ence of two halides in the starting material 3. Thus, the convenient
methodology to overcome this problem is required. In this Letter,
we described our microwave-assisted amination reacting 3-bro-
mo-2-chloropyridine with several amine nucleophiles to provide
2-amino-3-bromopyridines in good yields. Whereas several syn-
theses of 2-aminopyridines via microwave-assisted amination have
been described in the literature, these reports had an amine
substrate scope that was limited to cyclic secondary amines (pyr-
rolidines and piperidines)11 and no synthetic study for various
amine bearing hydroxy moiety has been reported.
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Table 1
Optimization of amination reaction

N Cl

Br

N N
H

Br OH
H2N

OH

3 2

conditions

Entry Equiv of amine (equiv) Conditions Temp/time Yield (%)

1 2 Sealed tube
i-Pr2EtN(3 equiv)/DMSO

180 �C/24 h 65

2 2 Microwave irradiation
i-Pr2EtN(3 equiv)/DMSO

180 �C/1 h 82

3 1 Microwave irradiation
Pyridine

180 �C/3 h 45

4 1.5 Microwave irradiation
Pyridine

180 �C/2 h 66

5 2 Microwave irradiation
Pyridine

180 �C/1 h 87

6 4 Microwave irradiation
Pyridine

180 �C/0.5 h 92
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Table 2 (continued)

Entry Amine (2 equiv) Time (h) Product Yielda (%)
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a Isolated yield.
b 3-Bromo-2-chloropyridine decomposed during prolonged reaction times.

N N
H

Br

N N
H

O5 mol% Pd(OAc)2

1e2

OH

Ligand, Cs2CO3, PhCH3

Scheme 2.

3888 J. G. Kim et al. / Tetrahedron Letters 51 (2010) 3886–3889
The initial experiment was performed with 2-aminoethanol by
using i-Pr2EtN/DMSO at 180 �C for 24 h in sealed tube (Table 1, en-
try 1). The desired amination product 4 was isolated in moderate
yield (65%). When the reaction was conducted under microwave
irradiation conditions (at 180 �C for 1 h), the result was superior
in terms of conversion and yield when compared to that of the cor-
responding reactions in sealed tube by conventional heating condi-
tions, in which unreacted starting material remained even after
prolonged reaction time. A variety of solvents (pyridine, THF,
DME, and DMSO) and bases (i-Pr2EtN, DBU, and pyridine) were
investigated in great detail, and we found that the use of pyridine
was optimal in many cases, although the reactions also proceeded
well using a combination of i-Pr2EtN (3 equiv) and DMSO (entry
2). Nevertheless amination under microwave irradiation conditions
proved successful, completion of the reaction required the use of a
large excess of aminoethanol (entry 6). Due to the expense of the
chiral aminoethanol derivatives used, a ratio of 1:2 2-chloropyri-
dine/aminoethanols was found to be optimal to provide the amina-
tion product in high yield at relatively short reaction time (entry 5).

The reaction between 3-bromo-2-chloropyridine and several
aminoalcohols is shown in Table 2. The reaction with unsubstitut-
ed aminoalcohols (2-aminoethanol and 3-amino-1-propanol) gave
good yields of the amination products (entries 1 and 2). Substi-
tuted aminoethanols (entries 3–6) with either R1 or R2 (methyl
and phenyl groups) gave a slightly lower yield and also required
longer reaction time (1.5–2 h) compared to the corresponding
unsubstituted aminoethanol. The yield was 80% in the case of a
cyclic secondary amine (pyrrolidine-2-ylmethanol; entry 8),
whereas the corresponding noncyclic secondary amines (entries
7 and 9) gave a slightly lower yield (65% and 48%), suggesting that
the reactivity of cyclic amine is higher than that of noncyclic
amines. Aminoethanols bearing additional hydroxy moiety (entries
10 and 11) also gave high yields (81% and 76%) without decreasing
the reactivity of amine. Finally, amination of 2-aminocyclohexanol
(entry 12) was very sluggish and gave only 10% desired product,
presumably due to strong hydrogen bonding between hydroxy
and amino groups to decrease the reactivity of amine. Both pro-
longed reaction time (>2 h) and increased reaction temperature
(210 �C) resulted in the slow decomposition of the starting
material.

With the (S)-2-(3-bromopyridin-2-ylamino)propan-1-ol (2e) in
hands, our attention was turned to a Pd-catalyzed C–O bond forma-
tion of 2e to provide the desired (S)-3-methyl-3,4-dihydro-2H-
pyrido[3,2-b][1,4]oxazine (Scheme 2). By following Buchwald’s
conditions [5 mol % of Pd(OAc)2, 8 mol % of 2-(di-t-butylphosphi-
no)biphenyl, Cs2CO3, PhMe, 80 �C],12,14 cyclization of 2e cleanly
afforded the pyrido[1,4]oxazine derivative 1 in 74% yield {½R�20

D =
0.42 (c 0.86, CHCl3)}. Although enantioselective syntheses of chiral
pyrido[1,4]oxazine bearing C-3 substituents have been repor-
ted4b,4d, to the best of our knowledge, there is no report for the
synthesis of (S)-3-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxa-
zine (1).

In conclusion, we have reported an efficient synthesis of 2-ami-
noalcohol-substituted pyridine derivatives via microwave-assisted
amination of 3-bromo-2-pyridine. This methodology could provide
a key intermediate for the synthesis of substituted pyrido[1,4]oxa-
zine derivatives.
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